Optical Birefringence in Cubic Crystals

R. E. NETTLETON

Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

Received November 23, 1970

When there exists a nonlocal relation between polarization and electric field **E** in a cubic crystal, the dielectric tensor ϵ_{ij} appropriate to a light wave with propagation constant **k** has the form [1, p. 96f]:

$$\epsilon_{ij} = \epsilon_0 \,\delta_{ij} + \sum_{r,m} \alpha_{ijrm} k_r k_m \,. \tag{1}$$

When this ansatz is substituted into Maxwell's equations, the $O(k^2)$ terms cause the phase velocity to depend on wave polarization, so that we have bi-refringence if **k** is not parallel to a symmetry axis [1, 2].

The detailed dependence of k and refractive index \tilde{n} , for a propagating mode of given polarization, on $\mathbf{s} \equiv \mathbf{k}/k$ has been predicted several times [1, 3, 4] by invoking the contribution to ϵ_{ij} of exciton transitions induced by the $\mathbf{p} \cdot \mathbf{A}$ interaction between an electron of momentum \mathbf{p} and a field of vector potential \mathbf{A} . For a plane, transverse electromagnetic wave with $\mathbf{E}/E \equiv \boldsymbol{\xi}$, we expand

$$\mathbf{A} = -\frac{ic}{2\omega} \, \boldsymbol{\xi} \{ E_0 \exp[i(\mathbf{k} \cdot \mathbf{r}) - \omega t] - \text{c.c.}] \}$$

and consider transitions caused by the quadrupole O(k) contribution to $H_{int} = -e(2mc)^{-1}[\mathbf{p} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{p}]$. The probability of such a transition from ground state $|0\rangle$ to state $|S\rangle$ should be proportional to the absorption or radiative intensity

$$I = |\langle S \mid H_{\text{int}} \mid 0 \rangle|^2 = Bk^2 \mid \boldsymbol{\xi} \cdot \langle S \mid \mathbf{pr} \mid 0 \rangle \cdot \mathbf{s} \mid^2$$
(2)

which gives the s dependence of both absorption and \tilde{n}^2 .

Existing calculations [1, 3, 4] based on (2) have selected a 4-fold axis as the direction of unit vector z and taken ξ to be either of

$$\boldsymbol{\xi}_{s} = (\mathbf{s} \times \mathbf{z}) | \mathbf{s} \times \mathbf{z} |^{-1}, \qquad \boldsymbol{\xi}_{p} = \mathbf{s} \times \boldsymbol{\xi}_{s}. \tag{3}$$

If this choice has any physical meaning, these waves must be the unique transverse pair that can propagate in a general direction in an anisotropic crystal (see below). In terms of the cartesian components $[\cos \theta, \sin \theta \cos \phi, \sin \theta \sin \phi]$ of s, the functions *I* appropriate to "s" and "p" polarization, for $|S\rangle$ a doubly-degenerate excited state, assume the form [1, p. 167],

$$I_s = B_s \sin^2 \theta \sin^2 2\phi,$$

$$I_p = B_p \sin^2 2\theta (3 + \cos^2 2\phi).$$
(4)

These intensities are not invariant as they should be with respect to rotations about a trigonal axis, and therefore there must be additional transverse waves, which we shall see is not the case, or else the existing literature [1, 3, 4] has gone astray. For if we set $I_s = I_p$, we find $\theta = 0$ is an isolated point satisfying this isotropy condition whereas $\theta = \pi/2$, $\phi = 0$ lies on a continuous $I_s = I_p$ curve passing through it.

Clearly the error lies in the choice (3) for ξ . We can always find two orthogonal directions ξ_1 , ξ_2 such that $I_1 = I_2$ when we calculate *I* from (2), and so if we do not get optical isotropy in a direction s in which it should occur by cubic symmetry, we have simply made the wrong choice of ξ for that direction. Equations (3) are appropriate for a crystal in which z is the unique optic axis, where an O_{λ} cube has seven axes, in $\langle 001 \rangle$ and $\langle 111 \rangle$ directions.

To determine the two correct ξ values for a given s, we must go back to Maxwell's equations and derive [1, p. 153]:

$$\tilde{n}^{2}E_{i} = [\epsilon_{0} + \alpha_{2}\tilde{n}^{2}] E_{i} + \tilde{\alpha}\tilde{n}^{2}s_{i}^{2}E_{i} + (2\alpha_{3} + 1) \mathbf{E} \cdot \mathbf{s} \, \tilde{n}^{2}s_{i} \,, \qquad i = 1, ..., 3, \tag{5}$$

where α_1 , α_2 , α_3 are the three nonzero components of α_{ijrm} , and

$$\tilde{\alpha} = \alpha_1 - \alpha_2 - 2\alpha_3 \, .$$

If we set $\mathbf{E} = \mathbf{E}_0 + \mathbf{E}_1$, where $\mathbf{E}_0 = E_0 \mathbf{e}$ is transverse and \mathbf{E}_1 is a small longitudinal component which we calculate to $O(\alpha)$, treating the α term in (5) as a perturbation, we find

$$\tilde{n}^2/\epsilon_0 = 1 + \alpha_2 + \tilde{\alpha} \sum_j s_j^2 e_j^2,$$

 $s_i^2 e_i - e_i \sum_j s_j^2 e_j^2 - s_i \sum_j s_j^3 e_j = 0.$
(6)

These equations are satisfied by e directions (3) only in symmetry planes containing z or perpendicular to z. Therefore, Eqs. (4) are physically meaningless except in these planes. Since $\tilde{\alpha}$ is only a proportionality factor in the angle-dependent terms,

the relative anisotropy corresponding to different s directions resulting from existence of two solutions to Eqs. (6) is independent of the α_i , and therefore of $|S\rangle$, so long as $\tilde{\alpha} \neq 0$, which is true except for one triply-degenerate $|S\rangle$. A more detailed description of these calculations will be given in a later paper.

References

- 1. V. M. AGRANOVICH AND V. L. GINZBURG, "Spatial Dispersion in Crystal Optics and the Theory of Excitons," Interscience, New York, 1966.
- 2. H. B. G. CASIMIR, Philips Res. Repts. 21 (1966), 417.
- 3. K. H. HELLWEGE, Z. Physik 129 (1951), 626.
- 4. V. I. CHEREPANOV AND V. S. GALISHEV, Sov. Phys. Sol. State 3 (1960), 790.